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Abstract
The π+π+ s-wave scattering phase-shift is determined below the inelastic threshold using Lattice
QCD. Calculations were performed at a pion mass of mπ ∼ 390 MeV with nf = 2 + 1 clover
fermion discretization in four lattice volumes, with spatial extent L ∼ 2.0, 2.5, 3.0 and 3.9 fm, and
with an anisotropic lattice spacing of bs ∼ 0.123 fm in the spatial direction and bt ∼ bs/3.5 in
the time direction. The phase-shifts are determined from the energy-eigenvalues of π+π+ systems
with both zero and non-zero total momentum in the lattice volume using Lüscher’s method. Our
calculations are precise enough to allow for a determination of the threshold scattering parameters,
the scattering length a, effective range r, and the shape-parameter P , in this channel and to examine
the prediction of two-flavor chiral perturbation theory: m2

πar = 3+O(m2
π/Λ

2
χ). Chiral perturbation

theory is used, with the Lattice QCD results as input, to give a prediction for the scattering
phase-shift (and threshold parameters) at the physical pion mass. Our results are consistent with
determinations obtained from the Roy equations and with the existing experimental phase shift
data.
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I. INTRODUCTION

Pion-pion (ππ) scattering at low energies is the theoretically simplest and best-understood
hadronic scattering process. Its simplicity and tractability follow from the pseudo-Goldstone
boson nature of the pion, a consequence of the spontaneously broken chiral symmetry of
QCD, which implies powerful constraints on its low-momentum interactions. The ampli-
tudes for ππ scattering are uniquely predicted at leading order (LO) in chiral perturbation
theory (χPT) [1]. Subleading orders in the chiral expansion give rise to perturbatively-small
deviations from the LO determinations (for small pion masses), and contain both calculable
non-analytic contributions and analytic terms with low-energy constants (LEC’s) that can-
not be determined by chiral symmetry alone [2–4]. Fortunately, Lattice QCD calculations
are reaching a level of precision where statistically significant values of the LEC’s in the
I = 2 (π+π+) channel are being calculated. Once the LEC’s are obtained using unphysical
lattice pion masses, χPT can be used to predict the phase shift at the physical pion mass
to relatively high precision and with quantified uncertainties. The current capability of Lat-
tice QCD —together with χPT— to calculate ππ scattering parameters very accurately is
important theoretically because Roy-equation [5–7] determinations of ππ scattering param-
eters, which use dispersion theory to relate scattering data at high energies to the scattering
amplitude near threshold, have also reached a remarkable level of precision [8–10], and the
results of the two methods can now be compared and contrasted.

There have been independent lattice QCD determinations of the π+π+ scattering length;
with three flavors (nf = 2 + 1) of light quarks using domain-wall valence quarks on asqtad-
improved staggered sea quarks [11, 12], and with two flavors (nf = 2) of light quarks using
twisted-mass quarks [15] and improved Wilson quarks [13, 14, 16, 17]. These determinations
are in agreement with the Roy equation values. The first calculation of the π+π+ scattering
phase shift was carried out by the CP-PACS collaboration, who exploited the finite-volume
strategy to study s-wave scattering with nf = 2 improved Wilson fermions [13, 14] at pion
masses in the range mπ " 500 − 1100 MeV. The amplitudes obtained from the Lattice
QCD calculations were extrapolated to the physical mass using a polynomial dependence
upon the pion mass, instead of using the known pion-mass dependence of the amplitude
based upon the symmetries of QCD encapsulated in χPT. In a recent paper, the Hadron
Spectrum Collaboration (HSC) studied the s-wave π+π+ phase shift with pion masses in
the range mπ " 390 − 520 MeV [18]. Further, they have provided the first Lattice QCD
calculation of the π+π+ phase shift in the d-wave (l = 2) [18].

In this work, which is a continuation of our high statistics Lattice QCD explorations [19–
23], we determine the π+π+ scattering amplitude below the inelastic threshold. Calculations
are performed with four ensembles of nf = 2 + 1 anisotropic clover gauge-field configura-
tions at a single pion mass of mπ ∼ 390 MeV with a spatial lattice spacing of bs ∼ 0.123 fm,
an anisotropy of ξ ∼ 3.5, and with cubic spatial volumes of extent L ∼ 2.0, 2.5, 3.0 and
3.9 fm. Predictions are made for a number of threshold parameters which encode the lead-
ing momentum-dependence of the scattering amplitude, and dictate the scattering length,
effective range and shape parameters in the effective range expansion (ERE) of the inverse
scattering amplitude. The Lattice QCD predictions are found to be in agreement with the
Roy-equation determinations of the threshold parameters, and with the available experi-
mental data for the phase shift. Beyond the threshold region, the LEC’s that contribute to
the two-flavor chiral expansion of the scattering amplitude are determined, allowing for a
prediction of the phase-shift at the physical pion mass to be performed at next-to-leading
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order (NLO). The predicted phase-shifts are in agreement with the experimental data.
The Maiani-Testa theorem demonstrates that S-matrix elements cannot be determined

from stochastic lattice calculations of n-point Green’s functions at infinite volume, except
at kinematic thresholds [24]. Lüscher showed that by computing the energy levels of two-
particle states in the finite-volume lattice, the 2 → 2 scattering amplitude can be recov-
ered [25–34]. These energy levels are found to deviate from those of two non-interacting
particles by an amount that depends on the scattering amplitude (evaluated at that energy)
and varies inversely with the lattice spatial volume in asymptotically large volumes. In
this paper, Lüscher’s method is used to extract the phase shift from the lattice-determined
energy-levels.

This paper is organized as follows. In Sec. II, we provide some details of the lattice
calculations: we discuss the anisotropic clover lattices that are used and the determination
of the anisotropy parameter. Sec. III gives a summary of the eigenvalue equation which is
relevant to extracting phase shifts from lattice-measured energy levels, in the center-of-mass
(CoM) system and in boosted (lattice = “laboratory”) systems. The results of the Lattice
QCD calculations are presented in Sec. IV and relevant fits that are used to determine the
effective range parameters, up to and including the shape parameter, are discussed. Sec. V
includes a summary of the relevant χPT formulas, the chiral fits to the lattice data, and the
prediction for the π+π+ phase shifts up to the inelastic threshold at the physical pion mass.
Finally, a summary of our predictions and a discussion of the systematic uncertainties is
given in Sec. VI.

II. DETAILS OF THE LATTICE QCD CALCULATIONS

A. Anisotropic Clover Lattices

Anisotropic gauge-field configurations have proven useful for the study of hadronic spec-
troscopy [35–38], and, as the calculations required for studying multi-hadron systems rely
heavily on spectroscopy, we have put considerable effort into calculations using ensembles
of gauge fields with clover-improved Wilson fermion actions with anisotropic lattice spacing
that have been generated by the HSC. In particular, the nf = 2+1 flavor anisotropic clover
Wilson action [39, 40] with stout-link smearing [41] of the spatial gauge fields in the fermion
action with a smearing weight of ρ = 0.14 and nρ = 2 has been used. The gauge fields
entering the fermion action are not smeared in the time direction, thus preserving the ultra-
locality of the action in the time direction. Further, a tree-level tadpole-improved Symanzik
gauge action without a 1× 2 rectangle in the time direction is used.

The present calculations are performed on four ensembles of gauge-field configurations
with L3×T of 163×128, 203×128, 243×128 and 323×256 lattice sites, with a renormalized
anisotropy ξ = bs/bt where bs and bt are the spatial and temporal lattice spacings, respec-
tively. The spatial lattice spacing of each ensemble is bs = 0.1227 ± 0.0008 fm [37] giving
spatial lattice extents of L ∼ 2.0, 2.5, 3.0 and 3.9 fm respectively. The same input light-quark
mass parameters, btml = −0.0840 and btms = −0.0743, are used in the production of each
ensemble, giving a pion mass of mπ ∼ 390 MeV. The relevant quantities to assign to each
ensemble that determine the impact of the finite lattice volume are mπL and mπT , which
are given in Table I. In addition we tabulate the pion masses on the four lattice volumes. As
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discussed in detail in Ref. [22], exponential finite-volume corrections are negligible for the
pion masses, a necessary condition for the application of Lüscher’s finite-volume method for
obtaining phase shifts. Additionally, the predicted exponential finite-volume corrections to
ππ scattering near threshold are expected to be negligible [42]. Multiple light-quark prop-
agators were calculated on each configuration in the four ensembles. The source locations
were chosen randomly in an effort to minimize correlations among propagators.

TABLE I: Results from the Lattice QCD calculations in the four lattice volumes. t.l.u denotes
temporal lattice units.

L3 × T 163 × 128 203 × 128 243 × 128 323 × 256

L (fm) ∼2.0 ∼2.5 ∼3.0 ∼3.9

mπL 3.888(20)(01) 4.8552(84)(35) 5.799(16)(04) 7.7347(74)(91)

mπT 8.89(16)(01) 8.878(54)(22) 8.836(85)(02) 17.679(59)(73)

mπ (t.l.u.) 0.06943(36)(0) 0.06936(12)(0) 0.06903(19)(0) 0.069060(66)(81)

B. Determination of the Anisotropy Parameter, ξ

In the continuum and in infinite-volume, the energy-momentum relation for the pion is that
of special relativity, E2 = m2

π + |p|2. In Lattice QCD calculations, this relation is more
complicated due to the finite lattice spacing (including the violation of Lorentz invariance)
and the finite-volume, resulting in E2 being a non-trivial function of p, which has a polyno-
mial expansion at small momentum. Retaining the leading terms in the energy-momentum
relation, including the lattice anisotropy ξ, the energy and mass in temporal lattice units,
and the momentum in spatial lattice units (s.l.u) are related by

( bt Eπ (|n|))2 = (bt mπ)
2 +

1

ξ2

(
2 π bs
L

)2

n2 . (1)

The Lattice QCD calculations of the energy of the single pion state at a given momentum
p = 2π

L n (where n is an integer triplet) allows for a determination of ξ, and hence establishes
the energy-momentum relation that is crucial for determining the scattering amplitude from
the location of two-particle energy eigenvalues. We obtain ξ = 3.469(11) where the statisti-
cal and systematic uncertainties have been combined in quadrature. This is consistent with
the value determined by Dudek et al. of ξ = 3.459(4) [18]. A fit to a higher order polynomial
provides a result that is consistent with this value but with larger uncertainties in the con-
tributing terms. It is important to use the lattice determined value of ξ, and to propagate its
associated uncertainty, as small variations in this parameter are amplified in the determina-
tion of the scattering amplitude from two-particle energy-eigenvalues when the interaction
is weak (and the energy of the two-particle state is near that of the non-interacting system).

III. THE FINITE VOLUME METHODOLOGY

The formalism that was put in place by Lüscher to extract two-particle scattering amplitudes
below the inelastic threshold from the energy-eigenvalues of two-particle systems at rest in
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a finite cubic volume [27, 28] was extended to systems with non-zero total momentum by
Rummukainen and Gottlieb [30]. Subsequent derivations have verified and extended [14, 31–
34] the work in that paper. The use of boosted systems allows for the amplitude to be
determined at more values of the center-of-mass momentum, between those defined by 2π

L n.
Here the results that are relevant to the present analysis of the boosted π+π+ systems, and
to the systems at rest, are restated.

Using the notation of Ref. [31], the energy in the CoM frame is denoted by E∗, which is
related to the energy E and momentum Pcm in the “laboratory system” (the total lattice
momentum) by E∗2 = E2 − |Pcm|2. In what follows, it is useful to define Pcm = |Pcm|. The
γ-factor is straightforwardly defined by γ = E/E∗, and E∗ is also related to the magnitude
of the momentum of each π+ in the CoM frame q∗ by E∗2 = 4 [ q∗2 +m2

π ]. The real
part of the inverse of the s-wave scattering amplitude below inelastic threshold, and hence
the scattering phase-shift, can be extracted from the total energy of the two-particle system
with total momentum Pcm = 2π

L d in the finite-volume via the generalized Lüscher eigenvalue
relation

q∗ cot δ(q∗) =
2

γL
√
π

Zd
00(1; q̃

∗2) , (2)

where the dimensionless quantity q̃∗ is defined by q̃∗ = L
2πq

∗. The function Zd
00(1; q̃

∗2) is a
generalization of the functions defined by Lüscher [27, 28],

Zd
LM(1; q̃∗2) =

∑

r

|r|L YLM(Ωr)

|r|2 − q̃∗2
, (3)

where the YLM are spherical harmonics and the sum is over vectors defined by

r =
1

γ

(
n‖ −

1

2
d

)
+ n⊥ = γ̂−1(n− 1

2
d) , (4)

which in turn are related to the lattice momentum-vectors by k = 2π
L n = 2π

L

(
n‖ + n⊥

)
. The

n are triplets of integers and the decomposition of n is along the direction defined by the
boost-vector d. Lüscher presented a method [27, 28] which can be used [30] to accelerate
the numerical evaluation of the sum in eq. (3), and a generalization of that method leads to

Zd
LM(1; q̃∗2) =

∑

r

e−Λ(|r|2−q̃∗2)

|r|2 − q̃∗2
|r|L YLM(Ωr)

+ δL,0 Y00 γπ3/2

[
2q̃∗2

∫ Λ

0

dt
etq̃

∗2

√
t

− 2√
Λ
eΛq̃

∗2

]

+ γ
∑

w %=0

e−iπw·d |γ̂w|L YLM(Ωγ̂w)

∫ Λ

0

dt
(π
t

)3/2+L

etq̃
∗2

e−
π2|γ̂w|2

t , (5)

where

γ̂w = γw‖ +w⊥ . (6)

The value of the sum is independent of the choice of Λ, and Λ = 1 has been used in previous
works [14].
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The energy-level structure resulting from Zd
00(1; q̃

∗2) has been discussed previously, e.g.
Ref. [30]. For the present calculations of boosted systems it is important to identify the
closely spaced energy-levels. This is because the amplitudes extracted from such levels
are subject to large systematic and statistical uncertainties due to the rapid variation of
Zd

00(1; q̃
∗2) in their vicinity, and also due to the difficulty in separating the states contributing

to the correlation functions. The energy-levels associated with two non-interacting particles
are located at the poles of Zd

00(1; q̃
∗2), and eq. (4) gives

d = (0, 0, 0) : q∗2 = 0, 1, 2, 3, ....

d = (0, 0, 1) : q∗2 =
1

4γ2
,
4γ2 + 1

4γ2
,

9

4γ2
,
8γ2 + 1

4γ2
︸ ︷︷ ︸

, ....

d = (0, 1, 1) : q∗2 =
1

2γ2
,
1

2︸ ︷︷ ︸
,
2γ2 + 1

2γ2
,
3

2︸ ︷︷ ︸
,
4γ2 + 1

2γ2
,
4 + γ2

2γ2
︸ ︷︷ ︸

.... , (7)

and so forth, where the underbraces denote states that become degenerate as γ → 1. We
stress that the relations summarized in this section are only valid below inelastic threshold.

IV. π+π+ SCATTERING ON THE LATTICE

A. Lattice Phase Shifts

The scattering of pions in the I = 2 channel is perturbative at low momentum and at small
light-quark masses, as guaranteed by χPT. In a finite volume this translates into two-pion
energies that deviate only slightly from the non-interacting energies; i.e., the sum of the pion
masses (or boosted pion masses for moving systems). We have analyzed π+π+ correlation
functions with Pcm = 0, 1,

√
2 and with various (non-interacting) momentum projections

among the pions. It is straightforward to partially diagonalize this system of correlation
functions into the energy-eigenstates at intermediate and long times. This is achieved by
assuming that the two-pion energy levels are close to their non-interacting values, and then
varying the linear combination of correlation functions in order to maximize the plateau
region. As an example, in fig. 1 we show the two-pion effective mass plots (EMP’s) on
the 323 × 256 ensemble with Pcm = 0, 1,

√
2. Six energy levels can be clearly identified in

the EMP’s in fig. 1 for each of the values of Pcm. (Note that these levels clearly show the
near degeneracies of the non-interacting system as established in eq. (7).) However, only
the first few levels, when propagated through the eigenvalue equation, lead to statistically
significant values for the phase shift. While the energies of other levels are established,
the structure of the eigenvalue equation is such that the uncertainties, as small as they
appear, are sufficiently large to produce uncertainties in the amplitude that are too large
and preclude and statistical significance1. The states that have been analyzed to produce

1 The EMPs of fig 1 indicate that the signal-to-noise ratio of the two-pion correlation functions decreases

with increasing excitation number. However, an analysis with higher statistics is required in order to

make a definitive statement about this issue.
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FIG. 1: The two-pion EMP’s for the first six levels (here n indicates the level) with Pcm = 0 (top)
1 (middle) and

√
2 (bottom) in units of the temporal lattice spacing on the 323 × 256 ensemble.

Only one half of the temporal lattice points are shown.
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amplitudes and phase-shifts with useful uncertainties are given in Table II, and are shown
in fig. 2. Note that momenta are quoted in units of mπ in order to formulate the subsequent
analysis in a manner that is independent of the scale setting. The values of k cot δ/mπ and

TABLE II: Results from the Lattice QCD calculations of π+π+ scattering in the four lattice
volumes. Pcm denotes the magnitude of the momentum of the center-of-mass in units of 2π/L. In
the column denoted by “level”, g.s. denotes the ground state, 1st denotes the first excited state
and 2nd denotes the second excited state.

k2/m2
π L3 × T Pcm level k cot δ/mπ δ

0.00678(54)(81) 323 × 256 0 n = 0 -4.49(35)(52) -1.06(12)(18)

0.01772(14)(23) 243 × 128 0 n = 0 -4.24(32)(49) -1.82(19)(30)

0.0309(17)(27) 203 × 128 0 n = 0 -4.25(21)(34) -2.37(18)(29)

0.0715(32)(48) 163 × 128 0 n = 0 -3.80(15)(22) -4.03(25)(35)

0.1641(20)(23) 323 × 256 1 n = 0 -3.33(38)(48) -7.1(0.8)(1.0)

0.378(5)(11) 203 × 128 1 n = 0 -4.1(0.4)(1.0) -8.6(0.8)(3.6)

0.3838(42)(85) 323 × 256
√
2 n = 0 -1.65(12)(28) -20.6(1.5)(3.1)

0.7323(53)(88) 323 × 256 0 n = 1 -2.78(29)(57) -17.2(1.7)(2.9)

0.9233(51)(73) 323 × 256 1 n = 1 -2.14(16)(26) -24.1(1.6)(2.6)

1.373(13)(22) 243 × 128 0 n = 1 -2.10(19)(36) -29.2(2.3)(4.3)

1.582(9)(16) 323 × 256 0 n = 2 -1.19(09)(14) -46.5(2.3)(3.5)

1.969(02)(04) 203 × 128 0 n = 1 -2.33(32)(56) -31.6(3.5)(5.6)

δ resulting from the energy-eigenvalues are shown in fig. 3.
Note that while the 323×256 Pcm =

√
2, n = 0 and 203×128 Pcm = 0, n = 1 levels appear

discrepant, we believe this to be a 1-σ statistical fluctuation. Also, the phase shift we have
extracted from the first excited state in the 243×128 ensemble disagrees with the equivalent
extraction presented in Ref. [18]. While we find a phase shift of δ = −29.2 ± 2.3 ± 4.3o

at k2 ∼ 0.21 GeV2, Ref. [18] finds δ ∼ −13 ± 2o at k2 ∼ 0.2 GeV2. We currently do not
understand the reason for the difference, however our result is consistent with the phase
shifts at the nearby momenta calculated on the 323 × 256 ensemble.

B. The Effective Range Expansion Parameters

The ERE is an expansion of the real part of the inverse scattering amplitude in powers of
the CoM energy,

k cot δ

mπ
= − 1

mπa
+

1

2
mπr

(
k2

m2
π

)
+ P (mπr)

3

(
k2

m2
π

)2

+ . . . (8)

where mπa and mπr are the scattering length and effective range in units of mπ, and P
is the shape parameter. Here k = |k| is the magnitude of each pion’s momentum in the
CoM. Such an expansion is expected to be convergent for energies below the t-channel cut,
which for ππ scattering is set by ππ exchange in the t-channel. The t-channel cut starts at
k2 = m2

π, while the inelastic threshold is k2 = 3m2
π.

9
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FIG. 2: The two-pion energies in units of the temporal lattice spacing for the lattice volumes
considered in this work. The (vertical) thickness of each level indicates the uncertainty of the
energy determination. Each state is labeled according to its center-of-mass momentum Pcm, and
its excitation level n. The non-interacting levels are denoted by dashed (black) lines. Notice that
the 323 × 256 Pcm =

√
2, n = 0 and Pcm = 0, n = 1 levels are nearly degenerate.

As the calculations of k cot δ/mπ are roughly linear in k2 in the region k2/m2
π < 0.5,

the scattering length and the effective range are fit (Fit A) using eq. (8) with P and the
other higher order terms set to zero. The extracted values of mπa and mπr are given in
Table III, and the resulting fit is shown in fig. 5, along with the 68% confidence interval
error ellipses for the two-parameters. In the region k2/m2

π < 1 the Lattice QCD calculations
exhibit curvature consistent with quadratic (and higher) dependence on k2. In Fit B the
three leading ERE parameters are fit to the results of the Lattice QCD calculations. The fits
are compared to the Lattice QCD calculations in fig. 6, which also shows the 68% confidence
interval error ellipse for the two-parameter subspace of the three-parameter fit. It is clear
from Table III that the fit parameters are consistent within the combined statistical and
systematic uncertainties. In what follows, where we use χPT to predict the parameters at
the physical point, the spread in value of the ERE parameters will serve as a useful gauge
of the systematic uncertainty introduced in the fitting of the scattering amplitude. It is
noteworthy that the data allows a significant determination of the shape parameter, P .

V. CHIRAL INTERPOLATIONS

A. Motivation

Although these Lattice QCD calculations have been performed only at one value of the pion
mass, as we will see, the effective range and threshold scattering parameters satisfy low-
energy theorems mandated by chiral symmetry, and therefore each scattering parameter

10
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π indicates the limit of the range of validity of the ERE set by the t-channel cut. The
inelastic threshold is at k2 = 3m2

π.

TABLE III: ERE parameters extracted from the Lattice QCD calculations of k cot δ/mπ.

Quantity Fit A: k2/m2
π < 0.5 Fit B: k2/m2

π < 1

mπa 0.230(10)(16) 0.226(10)(16)

mπr 12.9(1.5)(2.9) 18.1(2.4)(4.7)

m2
πar 2.95(20)(42) 4.06(30)(57)

P — -0.00123(30)(55)

χ2/dof 0.83 0.79

can be used to fix the corresponding LEC that appears at NLO in χPT. Thus the scattering
parameters at the physical point can be predicted at NLO in χPT. This is, in a sense, a
chiral interpolation rather than an extrapolation since one is interpolating between the pion
mass of the Lattice QCD calculation and the chiral limit. Unfortunately, the pion decay
constant, fπ, has not yet been accurately computed on the anisotropic lattice ensembles that
have been used in this work. However, χPT and the results of mixed-action Lattice QCD
calculations [44] can be used to determine fπ (and its uncertainty) evaluated at the pion
mass of these Lattice QCD calculations up to lattice spacing artifacts. Specifically, in what
follows we use

√
zlatt ≡ mlatt

π /f latt
π = 2.59(13) at mπ ∼ 390 MeV.

11
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B. Threshold Parameters in χPT

The relation between the π+π+ s-wave scattering amplitude t(s) (= tI=2
L=0(s)) and the phase

shift δ is given by [4]

t(s) =

(
s

s− 4

)1/2 1

2i
{e2iδ(s) − 1} , (9)

where s = 4(1+ k2/m2
π) and k = |k| is the magnitude of the three-momentum of each π+ in

the CoM frame. The NLO scattering amplitude can be expressed in terms of three LEC’s,
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C1, C2, and C4 [2, 3]:

t(k) = − m2
π

8πf 2
π

− m4
π

f 4
π

(
C1 − 31

384π3

)

+
k2

f 2
π

[
− 1

4π
+

m2
π

f 2
π

(
301

1152π3
− 1

128π2
C2 −

7

2
C1

) ]

+
k4

f 4
π

[
14

45π3
−

(
19

8
C1 − 9

512π2
C2 + 216πC4

) ]

− 1

4π3f 4
π

(
3

32
m4

π +
5

12
m2

πk
2 +

5

9
k4

)
log

(
m2

π

f 2
π

)

+
1

16π3f 4
π

(
1

4
m4

π + m2
πk

2 + k4

)√
k2

k2 +m2
π

log





√
k2

k2+m2
π
− 1

√
k2

k2+m2
π
+ 1





+
1

8π3f 4
π

(
3

16
m4

π +
7

9
m2

πk
2 +

11

18
k4

)√
k2 +m2

π

k2
log





√
k2+m2

π
k2 − 1

√
k2+m2

π
k2 + 1





− m4
π

128π3f 4
π

(
1 +

13

12

m2
π

k2

)
log2





√
k2+m2

π
k2 − 1

√
k2+m2

π
k2 + 1



 . (10)

The Ci can be expressed in terms of the li ≡ lri (µ = fπ), the familiar low-energy constants
of two-flavor χPT [2],

C1 ≡ − 1

2π
(4 l1 + 4 l2 + l3 − l4)−

1

128π3
;

C2 ≡ 32π(12 l1 + 4 l2 + 7 l3 − 3 l4) +
31

6π
;

C4 ≡ 1

5184π2
(212 l1 + 40 l2 + 123 l3 − 69 l4) +

701

622080π4
. (11)

The behavior of the amplitude near threshold (k2 → 0) can be written as a power-series
expansion in the CoM energy

Re t(k) = −mπa+ k2 b+ k4 c+O(k6), (12)

where the threshold parameters b and c are referred to as slope parameters. Matching the
threshold expansion in eq. (12) to the ERE in eq. (8) gives [4]:

mπr = − 1

mπa
− 2m2

πb

(mπa)2
+ 2mπa ; (13)

P = −
(mπa)3

[
(mπa)2 − 4(mπa)4 + 8(mπa)6 − 4 (mπa+ 2(mπa)3) b m2

π − 8 (b2 +mπa c)m4
π

]

8(mπa− 2(mπa)3 + 2b m2
π)

3
.

(14)
These equations can be inverted to obtain b and c from the lattice-determined ERE pa-
rameters. Expanding the NLO amplitude in eq. (10) in powers of k, one finds NLO χPT

14



expressions for the ERE and threshold parameters:

mπa =
z

8π
+ z2 C1 +

3z2

128π3
log z , mπr =

24π

z
+ C2 +

17

6π
log z ,

m2
πar = 3 + z C3 +

11z

12π2
log z , P = − 23z2

13824π2
+ z3 C4 +

613z3

995328π4
log z ,

m2
πb = − z

4π
− z2

(
7

2
C1 +

1

128π2
C2 +

5

48π3
log z

)
,

m4
πc = −z2

(
19

8
C1 − 9

512π2
C2 + 216πC4 +

5

36π3
log z

)
, (15)

where z ≡ m2
π/f

2
π and C3 = 24πC1+

1
8πC2. It is important to note that the shape parameter

P and the threshold parameter c do not receive contributions from LO χPT; i.e. they vanish
in current algebra.

C. Chiral Interpolation of Threshold Parameters

Using the ERE parameter set from Fit B given in table III, with statistical and systematic un-
certainties combined in quadrature, the four functions C1((mπa)latt, zlatt), C2((mπr)latt, zlatt),
C3((m2

πar)
latt, zlatt), C4(P latt, zlatt) can be determined. The ERE parameters in table III give

C1 = −0.00237(52) , C2 = 5.2(5.2) ;

C3 = −0.02(0.10) , C4 = 9.0(4.0)× 10−6 , (16)

from which follow, using eq. (15), the predictions at the physical point of

mπa = 0.04165(67)(21) , mπr = 72.0(5.3)(5.3) , m2
πar = 2.96(11)(17) ,

P = −2.022(58)(12)× 10−4 ,

b = −0.832(50)(0)× 10−1 m−2
π , c = 0.191(33)(0) m−4

π , (17)

where the final systematic uncertainty has been estimated by comparing the interpolated
results of Fits A and B, and by “pruning” the highest energy datum from the Lattice QCD
results and refitting.

With eq. (11), the fit values of the Ci in eq. (16) can be used to constrain various
combinations of the li, and the renormalization group can be used to express these constraints
in terms of the scale-independent dimensionless barred quantities, the li [2] 2. We find that

l3 − 4l4 = −29(27) , l1 − 6l4 = −32(25)

2l1 − 3l3 = 28(29) , l1 + 4l2 = 15.8(6.7) , (18)

2 The li are related to the li via

li =
γi

32π2

(
li + log

(
m2

π

µ2

) )
,

where γ1 = 1
3 , γ2 = 2

3 , γ3 = − 1
2 and γ4 = 2.
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where statistical and systematic uncertainties have been combined in quadrature. With
increased precision in the determination of the ERE parameters, such determinations of the
LECs could become competitive with other methods.

These results may seem surprisingly accurate for a Lattice QCD calculation performed
at a single pion mass. As mentioned previously, it is the chiral symmetry constraints on the
scattering parameters in the approach to the chiral limit that is responsible for the precision.
The quoted uncertainties do not contain estimates of the effects from higher order in the
chiral expansion, NNLO and higher, nor the contributions from lattice spacing artifacts that
are expected to contribute at O(b2s) [43]. The scattering length obtained here is consistent
within uncertainties with the previous Lattice QCD determinations [11, 12, 15]. Further,
the scattering length and threshold parameters are found to agree with determinations from
the Roy equation (with chiral symmetry input) [8],

mπa = 0.0444(10) , b = −0.803(12)× 10−1m−2
π ;

m2
πar = 2.666(0.083) , (19)

at the 2σ-level. Fig. 7 provides a comparison of the lattice calculation (and interpolation)
and the Roy equation value of m2

πar.
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D. Chiral Interpolation of the Phase Shift

The π+π+ scattering phase-shifts calculated with Lattice QCD, which extend above the
range of validity of the ERE but remain below the inelastic threshold, can be used to
predict the phase shift at the physical value of the pion mass. While the chiral expansion
may break down for scattering at sufficiently high energies, we ignore this issue and fit the
NLO χPT amplitude (one-loop level) to the results of the Lattice QCD calculations at all
of the calculated energies, the maximum invariant mass being

√
s ∼ 1340 MeV.

The results of the Lattice QCD calculations given in Table II are fit to the formula

k cot δ

mπ
=

√

1 +
k2

m2
π

(
1

tLO(k)
− tNLO(k)

(tLO(k))2

)
+ i

k

mπ
, (20)

where tLO and tNLO are the LO and NLO contributions to t(k) in the chiral expansion, given
in eq. (10). The result of the fit is shown in fig. 8; in the left panel the fit (of C1, C2,
and C4) to k cot δ/mπ is shown, and in the right panel, the fit values of C1, C2, and C4

(fully correlated) are used to predict the phase shift at the pion mass of the Lattice QCD
calculations, mπ ∼ 390 MeV. The 68% confidence intervals for C1, C2, and C4 from this fit
are

C1 = (−0.0040,−0.0013) , C2 = (2.67, 24.1) , C4 = (−1.7,+3.6)× 10−5 , (21)

with a χ2/dof = 2.1 (for the fit with the statistical and systematic uncertainties combined
in quadrature). The interpolated ERE parameters are:

mπa = 0.04123(84) , mπr = 80.0(9.58) , P = −1.85(31)× 10−4 , (22)

which are consistent within uncertanties, but less precise than the threshold determinations
of eq. (17). For a better determination of the threshold parameters from the global fit, one
requires more accurate data and one order higher in the chiral expansion. In fig. 9 the fit
values of C1, C2, and C4 are used to predict the phase shift at the physical value of the pion
mass, mπ ∼ 140 MeV, which is compared to the experimental data of Refs. [45–48]. Fig. 10
compares the phase shift prediction to the Lattice QCD phase-shift determination by CP-
PACS [14], and the Roy equation determinations of the phase shift from Refs. [8, 9]. One
should keep in mind that the interpolated phase shift is valid above the inelastic threshold,
as the 4π intermediate state is explicitly included in the χPT calculation. The combined
Lattice QCD and χPT prediction of the π+π+ phase shift at the physical pion mass is
found to be in good agreement with the experimentally-determined phase shift. While for
|k|>∼ 400 MeV the uncertainty in the prediction exceeds the uncertainties in the experimental
data, below this momentum the Lattice QCD+χPT prediction is more precise.

VI. SUMMARY AND CONCLUSION

The increases in high-performance computing capabilities and the advent of powerful new
algorithms have thrust Lattice QCD into a new era where the interactions among hadrons
can be computed with controlled systematic uncertainties. While calculation of the basic
properties of nuclei and hypernuclei is now a goal within reach, it is important to consider
the simplest hadronic scattering processes as a basic test of the lattice methodology for
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extracting scattering information (including bound states) from the eigenstates of the QCD
Hamiltonian in a finite volume. In this work, we have calculated the π+π+ scattering
amplitude using Lattice QCD over a range of momenta below the inelastic threshold. Our
predictions for the threshold scattering parameters, and hence the leading three terms in
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prediction (current algebra) at the physical pion mass. The red vertical line denotes the inelastic
(4π) threshold.

the ERE expansion, are consistent with determinations using the Roy equations [8, 9] and
the predictions of χPT. In particular, our determination of m2

πar = 2.96(11)(17) from an
interpolation of a fit to the low momentum values of k cot δ/mπ is consistent with the LO
prediction of χPT of m2

πar = 3
(
1 +O(m2

π/Λ
2
χ)
)
. Further, the resulting predictions for the

phase shift at the physical pion mass –using NLO χPT– are in agreement with experimental
data, and are even more precise in the low-momentum region. It is interesting to note that
while LO χPT reproduces the Lattice QCD calculations of the scattering length even at
large values of the pion mass, it appears not to reproduce Lattice QCD calculations of the
scattering phase shift.

The Lattice QCD calculations presented here were performed at one lattice spacing sim-
ply due to the lack of computational resources, therefore, an extrapolation of the ERE
parameters to the continuum limit (as was performed in the work of CP-PACS [14]) could
not be performed. The discretization of the quark fields that has been employed gives rise
to lattice spacing artifacts at O(b2s), and we expect such contributions to be small for these
calculations.
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